INTRODUCTION
Crickets feeding is a major determinant of the productivity of caged crickets. Insects reared on different diets differ in growth, maturity period and genetic make up which is attributed to feed quality. Crickets fed on a high protein diet take a shorter period to maturity compared to those on a low protein diet. However, high protein diets are generally expensive, especially for the small scale cricket producers. This study seeks to identify and evaluate locally available, nutritious and less costly feeds which can be used productively in mass-rearing.

OBJECTIVE
To compare growth performance of Acheta domestica and Gryllus bimaculatus fed on different agro-byproducts.

METHODOLOGY
Eight batches of 200 14 day-old crickets of A. domestica and G. bimaculatus were isolated from the mass rearing colony and placed in eight different plastic buckets of a 100L capacity measuring 100cm (H) by 60 cm (D). The buckets were placed on shelves in a tunnel measuring 8M by 15M and enclosed with insect netting and polythene material. Each of the species were fed on four different types of feeds: Diet A: Grower’s mash (control), 100g, Diet B: Rice bran+Bloodmeal, 95g:5g, Diet C: Rice bran+ Spent yeast, 87.5g: 12.5g & Diet D: Rice bran+ Spent grain, 69g:31g.

RESULTS & DISCUSSION
❖ All the diets showed a positive trend in weight for both species. However, the rate of weight gain in G. bimaculatus was seemingly higher compared to the case of weight gain in A. domestica. This could be attributed to the fact that G. bimaculatus is a voracious eater. Further, the weight measurement of A. domestica were taken 3 weeks later due to their seemingly slow growth.
❖ Sex difference was notified by the fifth week on G. bimaculatus fed on grower’s mash, rice bran+ spent grain, rice bran+ spent yeast and later sixth week on those fed on rice bran+ bloodmeal.
❖ Sex difference was notified by the ninth week on A. domestica fed on grower’s mash and rice bran+ spent yeast, tenth week on those fed on rice bran+ bloodmeal and rice bran+ spent grain.
❖ Adult emergence was observed by the seventh week on G. bimaculatus fed on grower’s mash, eighth week on those fed on rice bran+ bloodmeal and rice bran+ spent yeast and ninth week on those fed on rice bran+ spent grain.
❖ Adult emergence was observed by the eleventh week on A. domestica fed on grower’s mash and rice bran+ spent yeast.
❖ G. Bimaculatus reached maturity at 8 weeks on grower’s mash, 9 weeks on rice bran+ spent yeast and rice bran+ blood meal, 11 weeks on rice bran+ spent grain. For diets B and C, G. bimaculatus reached maturity at the same time but attained different weights.

CONCLUSION
❖ All the agro-byproducts have shown potential to be used as cricket feed.
❖ Whereas the two species seem to have the same preference for grower’s mash and spent yeast, they have different preference for spent grain and blood meal.

ACKNOWLEDGEMENT:
Authors wish to thank GREEINSECT Project & Jaramogi Oginga Odinga University of Science & Technology for financial support and valuable information.